Муниципальное образование Ейский район

Муниципальное бюджетное общеобразовательное учреждение гимназия №14

имени первого летчика - космонавта Юрия Алексеевича Гагарина города Ейска муниципального образования Ейский район, Краснодарского края.

УТВЕРЖДЕНО решение педсовета протокол № 1 от 31 августа 2020 года. Председатель педсовета А.П.Кравцова

РАБОЧАЯ ПРОГРАММА ПО БИОЛОГИИ

Уровень образования: среднее общее образование

Количество часов: 684

Учитель: *Аникеева Н.В.*

Программа разработана на основе Федерального государственного образовательного стандарта среднего общего образования, примерной авторской программы среднего общего образования по биологии для 10-11 классов автор: Пономарева И.Н., Издательство «Вентана-Граф», 2018г.

1. Планируемые результаты освоения программы.

В результате изучения учебного предмета «Биология» на уровне среднего общего образования:

Выпускник на базовом уровне научится:

- раскрывать на примерах роль биологии в формировании современной научной картины мира и в практической деятельности людей;
- понимать и описывать взаимосвязь между естественными науками:
 биологией, физикой, химией; устанавливать взаимосвязь природных явлений;
- понимать смысл, различать и описывать системную связь между основополагающими биологическими понятиями: клетка, организм, вид, экосистема, биосфера;
- использовать основные методы научного познания в учебных биологических исследованиях, проводить эксперименты по изучению биологических объектов и явлений, объяснять результаты экспериментов, анализировать их, формулировать выводы;
- формулировать гипотезы на основании предложенной биологической информации и предлагать варианты проверки гипотез;
- сравнивать биологические объекты между собой по заданным критериям, делать выводы и умозаключения на основе сравнения;
- обосновывать единство живой и неживой природы, родство живых организмов, взаимосвязи организмов и окружающей среды на основе биологических теорий;
- приводить примеры веществ основных групп органических соединений клетки (белков, жиров, углеводов, нуклеиновых кислот);
- распознавать клетки (прокариот и эукариот, растений и животных) по описанию, на схематических изображениях; устанавливать связь строения и функций компонентов клетки, обосновывать многообразие клеток;
 - распознавать популяцию и биологический вид по основным признакам;

- описывать фенотип многоклеточных растений и животных по морфологическому критерию;
 - объяснять многообразие организмов, применяя эволюционную теорию;
- классифицировать биологические объекты на основании одного или нескольких существенных признаков (типы питания, способы дыхания и размножения, особенности развития);
 - объяснять причины наследственных заболеваний;
- выявлять изменчивость у организмов; объяснять проявление видов изменчивости, используя закономерности изменчивости; сравнивать наследственную и ненаследственную изменчивость;
- выявлять морфологические, физиологические, поведенческие адаптации организмов к среде обитания и действию экологических факторов;
- составлять схемы переноса веществ и энергии в экосистеме (цепи питания);
- приводить доказательства необходимости сохранения биоразнообразия
 для устойчивого развития и охраны окружающей среды;
- оценивать достоверность биологической информации, полученной из разных источников, выделять необходимую информацию для использования ее в учебной деятельности и решении практических задач;
- представлять биологическую информацию в виде текста, таблицы,
 графика, диаграммы и делать выводы на основании представленных данных;
- оценивать роль достижений генетики, селекции, биотехнологии в практической деятельности человека и в собственной жизни;
- объяснять негативное влияние веществ (алкоголя, никотина, наркотических веществ) на зародышевое развитие человека;
 - объяснять последствия влияния мутагенов;
 - объяснять возможные причины наследственных заболеваний.

_

Выпускник на базовом уровне получит возможность научиться:

- давать научное объяснение биологическим фактам, процессам,
 явлениям, закономерностям, используя биологические теории (клеточную,
 эволюционную), учение о биосфере, законы наследственности,
 закономерности изменчивости;
- характеризовать современные направления в развитии биологии;
 описывать их возможное использование в практической деятельности;
 - сравнивать способы деления клетки (митоз и мейоз);
- решать задачи на построение фрагмента второй цепи ДНК по предложенному фрагменту первой, иРНК (мРНК) по участку ДНК;
- решать задачи на определение количества хромосом в соматических и половых клетках, а также в клетках перед началом деления (мейоза или митоза) и по его окончании (для многоклеточных организмов);
- решать генетические задачи на моногибридное скрещивание,
 составлять схемы моногибридного скрещивания, применяя законы наследственности и используя биологическую терминологию и символику;
- устанавливать тип наследования и характер проявления признака по заданной схеме родословной, применяя законы наследственности;
- оценивать результаты взаимодействия человека и окружающей среды,
 прогнозировать возможные последствия деятельности человека для
 существования отдельных биологических объектов и целых природных сообществ.

Требования к предметным результатам освоения базового курса биологии отражают:

- 1) сформированность представлений о роли и месте биологии в современной научной картине мира; понимание роли биологии в формировании кругозора и функциональной грамотности человека для решения практических задач;
- 2) владение основополагающими понятиями и представлениями о живой природе, ее уровневой организации и эволюции; уверенное пользование

биологической терминологией и символикой;

- 3) владение основными методами научного познания, используемыми при биологических исследованиях живых объектов и экосистем: описание, измерение, проведение наблюдений; выявление и оценка антропогенных изменений в природе;
- 4) сформированность умений объяснять результаты биологических экспериментов, решать элементарные биологические задачи;
- 5) сформированность собственной позиции по отношению к биологической информации, получаемой из разных источников, к глобальным экологическим проблемам и путям их решения.

2. Содержание курса биологии.

Тема 1. Популяционно-видовой уровень организации жизни - 12 ч.

Вид его критерии и структура. Популяция как форма существования вида и как особая генетическая система.

История развития эволюционных идей. Роль Ч. Дарвина в учении об эволюции. Популяция как основная единица эволюции. Движущие силы и факторы эволюции. Результаты эволюции. Система живых организмов на Земле. Приспособленность организмов к среде обитания.

Видообразование как процесс увеличения видов на Земле. Современное учение об эволюции — синтетическая теория эволюции (СТЭ). Человек как уникальный вид живой природы. Этапы происхождение и эволюция человека. Гипотезы происхождения человека. Основные закономерности эволюции. Основные направления эволюции: ароморфоз, идиоадаптация и дегенерация. Биологический прогресс и биологический регресс.

Биоразнообразие - современная проблема науки и общества. Проблема сохранения биологического разнообразия как основа устойчивого развития биосферы. Всемирная стратегия сохранения природных видов. Особенности популяционно-видового уровня жизни.

Лабораторная работа. № 3. - Изучение морфологического критерия.

Тема 2. Биогеоценотический уровень организации жизни – 8 ч.

Биогеоценоз как биосистема и особый уровень организации жизни.

Понятия: биогеоценоз, биоценоз и экосистема.

Пространственная и видовая структура биогеоценоза. Типы связей и зависимостей в биогеоценозе. Приспособления организмов к совместной жизни в биогеоценозах. Строение и свойства экосистем. Круговорот веществ

и превращения энергии в биогеоценозе. Устойчивость и динамика экосистем. Саморегуляция в экосистеме. Зарождение и смена биогеоценозов. Многообразие экосистем. Агроэкоситема. Сохранение разнообразия экосистем. Экологические законы природопользования.

Тема 3. Биосферный уровень организации жизни - 9 ч.

Учение В.И. Вернадского о биосфере. Функции живого вещества в биосфере. Гипотезы возникновения жизни (живого вещества) на Земле: А.И. Опарина и Дж. Холдейна. Этапы биологической эволюции в развитии биосферы. Эволюция биосферы. Круговороты веществ и потоки энергии в биосфере. Биологический круговорот. Биосфера как глобальная биосистема и экосистема. Человек как житель биосферы. Глобальные изменения в биосфере, вызванные деятельностью человека. Роль взаимоотношений человека и природы в развитии биосферы.

Особенности биосферного уровня живой материи.

Среды жизни организмов на Земле. Экологические факторы: абиотические, биотические, антропогенные. Значение экологических факторов в жизни организмов. Оптимальное, ограничивающее и сигнальное действия экологических факторов.

Тема 4. Значение курса общей биологии - 5 ч

Основные свойства жизни. Отличительные признаки живого. Биосистема как структурная единица живой материи. Уровни организации живой природы. Биологические методы изучения природы (наблюдение, измерение, описание и эксперимент, моделирование). Значение практической биологии. Отрасли биологии, ее связи с другими науками. Живой мир и культура. Творчество в истории человечества. Труд и искусство, их влияние друг на друга, взаимодействие с биологией и природой.

11 класс

Тема 5. Молекулярный уровень проявления жизни - 8 ч.

Молекулярный уровень жизни, его особенности и роль в природе. Основные химические соединения живой материи. Макро- и микроэлементы живого. Органические и неорганические вещества, их роль в клетке. Вода — важный компонент живого. Основные биополимерные молекулы живой материи. Понятие о мономерных и полимерных соединениях. Роль органических веществ в клетке организма человека: белков, углеводов, липидов, нуклеиновых кислот. Строение и химический состав нуклеиновых кислот в клетке. Понятие о нуклеотиде. Структура и функции ДНК. Репликация ДНК как носителя наследственной информации клетки. Матричная основа репликации ДНК. Правило комплементарности. Ген.

Понятие о кодоне. Генетический код. Строение, функции и многообразие форм РНК в клетке. Особенности ДНК клеток эукариот и прокариот.

Процессы синтеза как часть метаболизма в живых клетках. Фотосинтез как уникальная молекулярная система процессов создания органических веществ. Световые и темновые реакции фотосинтеза. Роль фотосинтеза в природе. Процессы биосинтеза молекул белка. Этапы синтеза. Матричное воспроизводство белков в клетке. Молекулярные процессы расщепления веществ в элементарных биосистемах как часть метаболизма в клетках. Понятие о клеточном дыхании. Бескислородный и кислородный этапы дыхания как стадии энергетического обеспечения клетки. Понятие о пластическом и энергетическом обмене в клетке.

Опасность химического загрязнения окружающей среды. Последствия деятельности человека в окружающей среде. Правила поведения в природной среде. Время экологической культуры человека и общества. Экология и новое воззрение на культуру. Осознание человечеством непреходящей ценности жизни. Экологическая культура - важная задача человечества.

Тема 6. Клеточный уровень организации жизни - 9 ч.

Клеточный уровень организации жизни и его роль в природе. Развитие знаний о клетке. (Р. Гук, К.М. Бэр, М. Шлейден, Т. Шванн, Р. Вирхов). Методы изучения клетки. Клетка как этап эволюции живого в истории Земли. Многообразие клеток и ткани. Клетка - основная структурная и функциональная единица жизнедеятельности одноклеточного многоклеточного организмов. Основные положения клеточной теории. Значение клеточной теории в становлении современной естественнонаучной картины мира. Основные части в строении клетки. Поверхностный комплекс биологическая мембрана). Цитоплазма клетки(органоидами включениями. Ядро с хромосомами. Постоянные и временные компоненты клетки. Мембранные и немембранные органоиды, их функции в клетке. Доядерные (прокариоты) и ядерные (эукариоты) клетки. Гипотезы происхождения эукариотических клеток. Клеточный цикл жизни клетки. Деление клетки – митоз и мейоз. Соматические и половые клетки. Особенности образования половых клеток. Структура Специфические белки хромосом, их функции. Хроматин – комплекс ДНК и специфических белков. Компактизация хромосом. Функции хромосом как системы генов. Диплоидный и гаплоидный набор хромосом в клетках. Гомологичные негомологичные хромосомы. Значение постоянства числа, формы и размеров хромосом в клетках. Гармония и целесообразность в живой клетке. Гармония и управление в клетке. Понятие "природосообразность". Научное познание и проблема целесообразности.

Лабораторная работа. № 3. - Исследование фаз митоза на примере микропрепарата клеток кончика корня.

- Наблюдение плазмолиза и деплазмолиза в клетках эпидермиса лука.

Тема 7.Организменный уровень организации живой материи - 17ч.

Организменный уровень жизни и его роль в природе. Организм как биосистема. Обмен веществ и процессы жизнедеятельности организмов. Регуляция процессов жизнедеятельности организмов. Типы питания организмов: гетеротрофы(сапротрофы, хищники, паразиты) и автотрофы (Фототрофы, хемотрофы).

Размножение организмов - половое и бесполое. Оплодотворение и его значение. Двойное оплодотворение у покрытосеменных (цветковых) растений.. Искусственное оплодотворение у растений и животных.

Индивидуальное развитие организма (онтогенез). Эмбриональный и постэмбриональный периоды развития организма. Последствия влияния алкоголя, никотина и наркотических средств на развитие зародыша человека. Наследственность и изменчивость — свойства организмов. Генетика —наука о закономерностях наследственности и изменчивости. Изменчивость признаков организма и ее типы (наследственная и ненаследственная). Мутации, их материальные основы - изменение генов и хромосом. Мутагены их влияние на организм человека и на живую природу.

Генетические закономерности наследования, установленные Г. Менделем, их цитологические основы. Моно- и дигибридное скрещивание. Закон Т. Моргана.. Хромосомная теория наследственности. Взаимодействие генов. Современные представления о гене, генотипе и геноме. Генетика пола и Наследственные наследование, сцепленное c полом. болезни. профилактика. Этические медицинской генетики. аспекты определяющие здоровье человека. Творчество как фактор здоровья и показатель образа жизни человека. Способность к творчеству. Роль творчества в жизни каждого человека. Генетические основы селекции. Вклад Н.И. Вавилова в развитие селекции. Учение Н.И. Вавилова о центрах многообразия и происхождения культурных растений. Основные методы селекции: гибридизация и искусственный отбор.

Биотехнология, ее достижения. Этические аспекты развития некоторых исследований в биотехнологии (клонирование человека). Вирусы – неклеточная форма существования организмов. Вирусные заболевания. Способы борьбы со СПИДом.

Лабораторная работа № 2.

- Решение генетических задач.

3. Тематическое планирование уроков

Тема	3. Тематическое планирование уроков		
	$N_{\underline{o}}$		Кол- во
	урок	Тема урока	часо
	а		в
	1	10 класс	
1.Популяцио	1.	История развития эволюционных идей.	1ч
нно-видовой 2.		Учение Ч.Дарвина о естественном отборе.	1ч
уровень	3.	Формы естественного отбора.	1ч
12ч.	4.	Современная теория эволюции.	1ч
	5.	Приспособленность организмов – результат	1ч
		естественного отбора.	
	6.	Основные направления эволюции.	1ч
	7.	Основные закономерности эволюции.	1ч.
	8.	Вид. Критерии вида.	1ч
	9.	Л.р.№1 « Морфологический критерий вида».	1ч
	10.	Видообразование как результат микроэволюции.	1ч
	11.	Особенности популяционно-видового уровня жизни.	14
	12.	Обобщение по теме «Эволюционное учение».	14
2.Биогеоцен	13.	Биогеоценоз как особый уровень организации жизни.	1ч
отический	14.	Структура биогеоценозов.	1ч
уровень	15.	Взаимоотношения между организмами в	1ч
жизни.		биогеоценозе.	
8 4.	16.	Причины устойчивости биогеоценозов.	1ч
	17.	Зарождение и смена биогеоценозов.	1ч
	18.	Сохранение разнообразия биогеоценозов	1ч
		(экосистем).	
	19.	Экологические законы природопользования.	1ч
	20.	Обобщение темы «Биогеоценоз как экосистема».	1ч
3.Биосферн	21.	Учение о биосфере. Круговорот веществ в биосфере.	1ч
ый уровень	22.	Происхождение живого вещества.	1ч
жизни.	23.	Биологическая эволюция в развитии биосферы.	1ч.
9 4	23.	Развитие жизни в протерозойскую эру.	1ч
	24.	Развитие жизни в мезозойскую и кайнозойскую эры.	1ч
	25.	Происхождение человека. Стадии антропогенеза.	1ч
	26.	Человеческие расы.	1ч
	28.	Система живых организмов на Земле.	1ч
	29.	Обобщение по теме « Биосфера».	1ч
4.Значение	30.	Методы биологических исследований.	1ч

курса общей	31.	Экологические факторы и их значение	1ч
биологии.	32.	Взаимоотношения человека и окружающей среды	1ч
5 ч.	33.	Охрана природы. Красная книга.	1ч
	34.	Обобщение темы «Экологические проблемы	1ч
		человечества».	
		11 класс	
5.Молекуляр	35	Предмет биологических наук.	1ч.
ный уровень	36	Химические элементы и неорганические вещества	1ч.
проявления		клетки	
жизни.	37	Органические вещества клетки	
8 4.	38	Обмен веществ в клетке.	1ч.
	39	Биосинтез белка.	1ч.
	40	Энергетический обмен.	1ч.
	41	Фотосинтез.	1ч.
	42	Обобщение темы «Химическая организация клетки».	1ч.
6.Клеточны	43	Основные положения клеточной теории. Ткани	1ч.
й уровень	44	Поверхностный аппарат клетки.	1ч.
организации	45	Цитоплазма и ее органоиды.	1ч.
жизни	46	Строение и функции клеточного ядра.	1ч.
9 ч.	47	Клеточный цикл. Митоз.	1ч.
	48	Деление клетки. Мейоз.	1ч.
	49	Особенности строения клетки прокариот.	1ч.
	50	Вирусы и бактериофаги.	1ч.
	51	Обобщение темы «Основы биологии клетки»	1ч.
<i>7.</i>	52	Организм как биосистема.	1ч.
Организмен	53	Способы размножения организмов.	1ч.
ный уровень	54	Оплодотворение и его значение.	1ч.
жизни	55	Развитие половых клеток.	1ч.
17 u	56	Индивидуальное развитие организмов. Эмбриогенез.	1ч.
	57	Постэмбриональное развитие организмов.	1ч.
	58	Обобщение темы «Основы биологии развития».	1ч.
	59	Наследственность и изменчивость.	1ч.
	60	Законы Менделя и их цитологические основы.	1ч.
	61	Дигибридное скрещивание.	1ч.
	62	Взаимодействие генов.	1ч.
	63	Сцепленное наследование. Генетика пола.	1ч.
	64	Л.Р.№2 Решение генетических задач.	1ч.
	65	Закономерности изменчивости.	1ч.
	66	Обобщение темы «Основы генетики».	1ч.

67	Предмет и задачи селекции.	1ч.
68	Методы селекции. Биотехнология.	1ч.

Согласовано	Согласовано
Протокол заседания	Зам. директора
методического	Аникеева Н.В.
объединения учителей	«31» 08. 2020 года
OT	
Захаренко Г.В.	